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Notes

» | attended only the first 3 days of the conference, therefore my take
comes from a limited perspective...

* 9 parallel tracks at the conference, | hopped between:
» Semiconductor detectors

» Front-end electronics
» Instrumentation for biological, medical and material research

* My 5 picks, somehow exotic:
» One plenary talk on the future of CMOS and High-Performance
Computing
» A couple technologies alternative to Si-planar sensors (3D sensors,

diamond)
» A couple examples of X-ray detectors (SOI, DEPFET for XFEL)



B e“ '0 n d CM OS The Engine Driving The Digital

K. Bernstein- IBM TJ Watson Research Center
“The Evolution of CMOS and post-CMOS Electronics”, plenary talk

* Despite the advances in technology and ‘ Fhs
miniaturization, the basic building block of & i &
modern microprocessors is still... a binary B : c ,ney\'\‘&
switch!

* As the technology node scales down, CMOS
processes are facing fundamental limitations, it 5
which will soon become quantum mechanical... e _— IBM's “Cell" 8-core Multiprocessor and

the underlying fundamental transistor
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Limits to the Present Technology Ultimate Boundaries: Minimum Switching Energy
c From “The Physical Limits of Computing” M.P. Frank,
(o) Compufing in Science and Eng, Oct, 2001
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Logic at the Unit Gate Level

* There is a wealth of research towards
the beyond-CMOS switch (not
necessarily binary), involving
nanotechnology and such...

SI FInFET k—_.u.u'sz.m
Physica E 40, 228 (2007)

8565508 5.8 kV X99.0K 333nm

Switches going forward naturally quantize their output —
can we exploit this in new architectures?
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Double-sided 3D

-

. . . Planar
* Electrodes are “pillars” implanted in sensor

substrate: lateral depletion, lower depletion ns
voltage, faster collection time = less trapping, P amon
more rad-hard... e -
e ... but: complex process, yield issues, areas of
inefficiency
* Double-sided approach has easier fabrication
process (?), minimizes inefficiency regions - o =

* Best performance in beam-test obtained with 1l i
detector at an angle ' - " e —
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Diamond detectors

M. Mikuz — University of Liubljana & Josef Stefan Institute
For the RD42 Collaboration
“Diamond Sensors for High Energy Radiation and Particle Detection”

pCVI

*  With respect to silicon, diamond shows lower 10000 -
leakage, higher mobility (faster signals), and is more

Applications in HEP

radiation-hard g 1000 -
* Two sensor types: g "
» polycristalline (pCVD), exists in 12 cm wafer ‘q,f: 1004 fadiation
» single crystal (scCVD), exists only in ~cm? pieces < Particle
e All LHC experiments use diamond as beam monitors g 10+ < [ trackers

* Proposed trackers:
» CMS Pixel Luminosity Telescope (PLT) 1 e e S S S
> ATLAS Diamond Beam Monitor (DBM) 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Year
. . ; A " .
CMS Pixel Luminosity Telescope @{ Diamond pixel modules <$
= ————— - g E—— e il
* Dedicated, stand—alone luminosity monitor
— Eight 3-plane telescopes each end of CMS * Full modules built with I3 pixel

— 1.60° pointing angle r=4.8cm, z=175cm chips @ OSU, IZM md Bonn

* Diamond pixel sensors active area:
— 3.9 mm x 3.9 mm, scCVD diamond
* Count 3-fold coincidences fast-or signals (40 MHz)
* Full pixel readout pixel address, pulse height (1 kHz)
» Stable 1% precision on bunch-by-bunch relative luminosity

\ barre|

plgtal

PLT plane

“Bump bonds

Cassette for 12 planes

Full cassette in test-beam

FEs e
™T diamond sensor baiip bonds

dimeﬂsionf: ~2%6.3 cm?
' weight:~2.2 g
TIPP, Chicago, June 11, 2011 Marko MikuZ: Diamond Sensors 21 TIPP, Chicago, June 11, 2011 Marko MikuZ: Diamond Sensors 23



Diamond Sensors
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1 Applications in HEP
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CMS Pixel Luminosity Telescope @ Diamond pixel modules <$
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* Dedicated, stand—alone luminosity monitor
— Eight 3-plane telescopes each end of CMS Full modules built with I3 pixel
— 1.60° pointing angle r=4.8cm,z=175cm chips @ OSU, IZM and Bonn

« Diamond pixel sensors active area: i, gl vaua,d,,ﬁthf:og'nanzg“dP xel Module
— 3.9 mm x 3.9 mm, scCVD diamond ‘

* Count 3-fold coincidences fast-or signals (40 MHz)

* Full pixel readout pixel address, pulse height (1 kHz)

» Stable 1% precision on bunch-by-bunch relative luminosity

\brre

plgtal

PLT plane

. B’ump bonds

Cassette for 12 planes

Full cassette in test-beam

FEs }
™T diamond sensor buip bodds

TIPP, Chicago, June 11, 2011 Marko MikuZ: Diamond Sensors 21 TIPP, Chicago, June 11, 2011 Marko MikuZ: Diamond Sensors 23

dimensions: ~ 2 x 6.3 cm?
Spg 7 xo3cn



SOI pixels for X-rays

A. Takeda - KEK

“High resolution X-ray Imaging Sensor with SOl CMOS technology”

SOI Pixel Detector
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(High Resistivity |
Substrate)

Energy Resolution

* Energy Spectrum @Room Temp.
— 221Am and Cu + Mo X-ray Target
* FWHM:13.4% @ 13.95 keV

+ Sensor Capacitor : 10 fF

>
>

10.3 mm

15.5mm
INTPIX4 Chip Photo

V sensor =200V
Integration Time = 250 ps
Back-illumination

o . 241 . . .
@20°C gTd ' c Anl\]ll X T INTPIX4 Calibration with X-ray Peaks
0, . + -
e ue : tutMo X-ray Target keV V.S. ADC Channel
18.04keV EWHM 400 -
eor= ~1.87 keV 0 | Gain = 12.61 pV/e-
so| 13.4 % @13.95keV w30 {->C sen=10fF §/
w / € 20 /
E a0 17.74keV | | © g
> [ / S w0
Q r 8]
QO 30 A %0
C \-\ = < 100 /§/
200 o€
E 20.77keV 50
10 0
C 0 5 10 15 20 25
%o 100 150 200" 250 300 350 Energy [keV]
ADC Channel [ADU = 0.24 mV = 19 e-]
TIPP2011 @ Chicago - Ayaki TAKEDA 12

2011.06/11 SAT

*  Monolithic detector that integrates full CMOS
electronics on a high-resistivity, fully-depleted
substrate, no bump-bonding

*  Js-reticle size imager, 17 pum pitch pixel with
Correlated Double-Sampling (CDS)

* 260 um thick, fully-depleted substrate, back-

illuminated

* Test with X-rays at various energies, energy
resolution improves with cooling

* ...we are working on similar developments

here at LBNL!

INTPIX4 X-ray Imaging 20 keV X-rays

* Fine Resolution & High Contrast !

250 ps Int. x 500 fr
* It is clear even by 100 fr.

** It depends on the number of photons.

room T, V., =200 V

-

£ mm

R
ST i

X-ray Imaging of a small dried sardine taken by an INTPIX4 (3 images are combined).

2011.06/11 SAT

TIPP2011 @ Chicago - Ayaki TAKEDA 15



DEPFETs for EU-XFEL

L. Andricek — MPI Halbleiterlabor, Munich
“DSSC — an X-ray Imager with Mega-Frame Readout Capabilities for

the European XFEL”

ILC-like beam structure:
10 Hz train, 2700 e*/train,
bunch spacing 220 ns

- need 5 MHz frame

rate with storage of >500

frames/burst

range 0.5-25 keV, need to handle large dynamic range:
new proposed structure with variable gain

amplifier (
-\ P+ drain cle
g ar gate

e
P+ source

FET gate

N+ clear

depleteq
n-Si bulk

~2700 pulses/600us

99.4ms

Time

S 272 ym ——

overflow
" region

source

Hexagonal pixel,
204x236um pitch

130nm readout ASIC with
8-bit ADC and SRAM in
pixel

”Tunnel fan ou

e

S
, TRy )
2
1 XFEL facility — overall 3.4 km
> electron LINAC
Length: 1.6 km
Energy: 17.5 GeV (nominal)
> beam distribution stations
-> undulators (100 ... 200 m)
> 5 beam lines to the experiment stations

The DEPFET for the XFEL

_

DEPFET Sensor with Sianal Compression - DSSC

Device Simulation
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rain Source
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outer source region
gate region (overflow 3)

inner source regien (gyerflow 2)

(overflow 1) Bulk

E The internal gate extends into the region below the source b
®  Small signals collected directly below the channel |

f,//_

e Drain current

% Most effective, large signal

E Large signals spill over into the region below the source
> Less effective, smaller signal
E staggered potential inside internal gate by varying impl. doses
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Driftring
Overflow 3

Overflow 1 Overflow 2
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Inject 10fC, 37 steps, every 250n




